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Abstract

Healthcare clinics regularly encounter dynamic data that changes due to variations1

in patient populations, treatment policies, medical devices, and emerging disease2

patterns. Deep learning models can suffer from catastrophic forgetting when fine-3

tuned in such scenarios, causing poor performance on previously learned tasks.4

Continual learning allows learning on new tasks without performance drop on5

previous tasks. In this work, we investigate the performance of continual learning6

models on four different medical imaging scenarios involving ten classification7

datasets from diverse modalities, clinical specialties, and hospitals. We implement8

various continual learning approaches and evaluate their performance in these9

scenarios. Our results demonstrate that a single model can sequentially learn10

new tasks from different specialties and achieve comparable performance to naive11

methods. These findings indicate the feasibility of recycling or sharing models12

across the same or different medical specialties, offering another step towards the13

development of general-purpose medical imaging AI that can be shared across14

institutions.15

1 Introduction16

Deep Neural Networks (DNNs) have recently exhibited remarkable achievements in various tasks,17

surpassing human expertise in some cases (7; 12; 14). However their dependence on fixed, balanced18

datasets within stable environments presents a significant constraint. The ever-changing nature of the19

real world requires networks capable of sequential learning over time and adapting to shifting data20

distributions. This shortcoming is especially pronounced in healthcare and medical imaging. The21

emergence of new diseases, changes in patient population, treatment policies, disease distribution,22

imaging hardware, or image acquisition techniques can significantly impact the model’s performance.23

Fine-tuning exclusively on new data, adapts models to the latest targets, resulting in a rapid loss of24

previously acquired knowledge. Techniques such as Joint Training (JT) are used to overcome this,25

where the model is trained on both old and new data. However, healthcare data can’t always be shared26

due to safety concerns and regulation differences across geographies. On the contrary, the NAIVE27

approach trains an independent model for each task, increasing computational resources required28

for training, deployment, and missing performance gain due to shared representation. Continually29

learning is an active area of research, allowing efficient training and adaptation of algorithms to new30

data without losing prior knowledge. This can improve the model updating, sharing, and resource31

optimization for healthcare institutions. Cross-sharing models between multiple hospitals can benefit32

both institutions. Finally, healthcare professionals will be able to screen and detect patients more33

effectively by quickly identifying and analyzing new biomarkers as they emerge with disease or34

population shift.35

In this work, we show the feasibility of training continually learning models for medical imaging.36

Our contributions are as follows:37
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1. We explore the potential of continual learning for sharing medical imaging AI algorithms38

across changes in hospitals/geographies, medical specialties, and imaging modalities.39

2. We create 4 continual learning scenarios to assess cross-sharing (inter-hospital scenario and40

one inter-specialty) and intra-specialty model recycling (pathology, radiology) use cases.41

3. We show that continual learning methods can gain performance on par with naive and joint42

learning approaches while remembering previous tasks.43

2 Methods44

We implement 6 variants of continual learning methods, namely memory aware synapses (MAS),45

replay using memory indexing (REMIND), MAS with replay (MAS+r), Neuro-inspired stability-46

plasticity adaptation (NISPA), dark experience replay (DER), and DER++; with prior two not47

requiring data access to previous tasks. The final four require data access, generally solved by local48

storage in replay buffers of fixed sizes. MAS (3) and its replay variant MAS+r are regularization49

methods that calculate the importance of the model parameters in an online fashion. REMIND (9)50

stores compressed low-level feature representations instead of actual input data, making it well-suited51

when past data is not feasible. NISPA (8) uses a rewiring mechanism inspired by the structural52

plasticity of biological neurons and driven by local activations of units similar to Hebbian learning53

in the brain. DER (4) and DER++ are replay methods that selectively choose examples with high54

uncertainty to replay. We train naïve learner, and joint learner for baseline comparison. The naive55

learner corresponds to training an independent model for each data, and the joint learner is trained on56

all data together. We use a 5-layered convolutional neural network (CNN) followed by a linear layer57

classifier as a backbone model. No task labels are provided during testing. To succeed, the model58

needs to learn inter-task differences to predict task ID on testing and learn intra-task differences to59

predict the correct class. We measure task accuracy percentage after every episode, average accuracy60

on seen classes after completing an episode, and backward transfer.61

2.1 Datasets and scenarios62

Figure 1 provides a snapshot of scenarios and datasets used. We devise four continual learning63

scenarios, divided into 3 major categories, to simulate learning new tasks inside the same specialty,64

different specialties, and hospitals. Inter-hospital scenario simulates model sharing across hospitals65

from different geographies. We used x-rays for pleural effusion, cardiomegaly, atelectasis, and66

consolidation from the Chexpert dataset, CXR-14 dataset, and VinBig dataset; in total representing67

3 hospitals and 2 countries. Inter-Specialty scenarios simulate model sharing between different68

medical specialties inside the same hospital and can help specialties with fewer data to benefit from69

those with more. We combine three specialties; pathology(10), radiology(11), and dermatology(5; 6).70

Intra-Specialty scenarios simulate model rotation within a specialty, mimicking learning new disease71

finding that appears later on. The pathology scenario contains three subtasks: histology of colorectal72

cancer (11), blood cells (1), and kidney cortex cells (13). The radiological scenario contains three73

subtasks: computed tomography (CT) (15)), ultrasound (2), and chest X-ray (11) images.74

3 Results and Discussion75

In this section, we discuss the performance of continual learning methods with comparison at the76

scenario and algorithm level. Figure 1 shows the average accuracy of methods on test data, with77

every point representing average accuracy on current and all previous tasks. As expected accuracy78

for NAIVE method takes a sharp dip. Continual learning methods perform on par or better, with79

NAIVE on the current task, with little to no drop in their performance on the previous task. Across80

all continual learning methods, replay methods perform better than regularization methods across all81

scenarios. MAS with replay and DER++ get high accuracies compared to other methods. MAS+r is82

consistently the best performer in all scenarios, achieving an average accuracy of 88,82,75,79, on inter-83

hospital, inter-specialty, pathology, and radiology respectively at the end of each scenario. MAS with84

replay had the highest backward transfer with a value of -2, -5, +3, and -5 on the respective scenarios.85

Among non-replay methods, MAS has a huge performance drop. REMIND achieves an average86

accuracy of 83,77,75,80 on inter-hospital, inter-specialty, pathology, and radiology respectively. It’s87

important to note that replay methods have access to a subset of previous data stored for future88
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DermaMnist: 7/ 7,007/ 2,005

6

PathMnist: 9/ 89,996 / 7,180 BloodMnist: 8/ 11,959 / 3,421 TissueMnist: 8/ 165,466 / 47,280

PneumoniaMnist: 2/ 4,708/ 624

OrganCMnist: 11/ 13,000 / 8,268 BreastMnist: 2/ 546 / 156
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(b)

Pathology

Radiology
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Medical Specialty

Hospital A

Hospital BHospital C
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8 9 10

12 Classes, 1 Modality,

1 specialty

Speciality A

Speciality BSpeciality C

Inter-Specialty

1 6 7

18 Classes, 3 Modalities, 

3 specialties

Modality A

Modality BModality C

1 2 3

Pathology

25 Classes,3 Modalities, 

1 specialty

Radiology

15 Classes, 3 Modalities, 

1 specialty

5 64.1 4.2 4.3 4.4

Intra-Specialty

(c)

Figure 1: Different learning scenarios and dataset. (a) shows scenarios and sequences of learning
tasks used to train the algorithms. (b) shows snapshots of images from different datasets, color-coded
(as per their specialty) sequence index on the right top of images. Each dataset has two or more
classification labels. Note the visual similarities inside each dataset and the diversity among the
different tasks in the scenario. Dataset 4 is split into 4 sub-tasks with unique classes, named 4.1,4.2,4.3
and 4.4

retraining. On the other hand, REMIND stores compressed representations, instead of the actual89

data, allowing memory efficiency and data privacy. Another critical point to note is REMIND’s90

dependence on its feature extractor. Since the initial feature extractor is frozen after its initialization,91

the model is less flexible for learning tasks unrelated to initial studies. Using pre-trained weights92

from bigger datasets can provide a boost in model performance.93

Limitations and Future work We don’t explore the effect of the sequence of tasks on learning, as94

this can impact quality of features learned. We used 32*32*3 image size on a small CNN architecture.95

Using higher resolution medical imaging and larger pre-trained models can help boost performance96

further. This can be an important future direction.97

4 Conclusion98

In this work, we explore the performance of continuous learning methods in varying specialties,99

modalities, and geographies. We show that continual learning algorithms can learn new tasks while100

maintaining performance on previous tasks, even while changing modalities specialties, and hospitals.101

3



This shows potential in developing general-purpose medical imaging AI that can be shared across102

institutions, with the ability to adapt to new tasks.103

5 Potential Negative Societal Impacts104

Continual learning models may inherit biases present in the data on which they are trained. If the105

training data is not representative, these biases can lead to disparities in medical diagnoses and106

treatment recommendations. While these risks are inherent in deep learning models, automatic107

unsupervised training of continual learning can exacerbate these biases when deployed, often going108

unnoticed. Furthermore, due to concerns related to quality control and disparities in deployment109

regions, continual learning models may inadvertently generate incorrect or misleading medical110

images or interpretations, which can have detrimental consequences for patients if not adequately111

monitored and controlled. AI systems are highly sensitive, potentially leading to overdiagnosis and112

overtreatment if not properly calibrated, thereby resulting in unnecessary medical interventions and113

increased healthcare costs. Lastly, as with any technological advancement, AI systems are susceptible114

to hacking and cybersecurity threats. Breaches of medical AI systems could result in unauthorized115

access to sensitive patient data or manipulation of diagnostic results, posing significant privacy and116

security risks.117
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